Résumé de Cours: SUITES NUMERIQUES

PROF: ATMANI NAJIB 2BAC SM BIOF

LES SUITES NUMERIQUES

Soit $(u_n)_{n\in I}$ une suite numérique.

A) Suite majorée minorée bornée croissante décroissante convergente

• $(u_n)_{n\in I}$ est majorée s'il existe un réel M tel que :

 $\forall n \in I \quad u_n \leq M$

- $(u_n)_{n\in I}$ est minorée s'il existe un réel m tel que : $m \le u_n$ $\forall n \in I$
- Une suite est bornée si elle est majorée et minorée. $(u_n)_{n\in I}$ est bornée ssi s'il existe un réel positif M tel que : $\forall n\in I \mid u_n\mid \leq M$
- La suite $(u_n)_{n=1}$ est croissante ssi: $\forall n \in I \ u_{n+1} \ge u_n$
- La suite $(u_n)_{n=1}$ est décroissante ssi $\forall n \in I \ u_{n+1} \le u_n$
- Unes suite qui tend vers une limite finie *l* s'appelle une suite convergente sinon elle est dite divergente
- Toute suite convergente est bornée
- Si une suite admet une limite finie *l* cette limite est unique
- Toute suite croissante et majorée est convergente.
- Toute suite décroissante et minorée est convergente
- Toute suite croissante et non majorée tend vers $+\infty$
- Toute suite décroissante et non minorée tend vers $-\infty$
- **B**)Suite arithmétique : $(u_n)_{n\in I}$ arithmétique: ssi $\forall n\in I$

 $u_{n+1} = u_n + r$ Le réel r la raison de la suite

si $(u_n)_{n\in I}$ est une suite arithmétique de raison r et u_p l'un de ses termes.

1)
$$u_n = u_p + (n-p)r \quad \forall n \in I$$

2)
$$s_n = u_p + u_{p+1} + ... + u_n = \frac{(n-p+1)}{2} (u_p + u_n)$$

C)Suite géométrique : $(u_n)_{n\in I}$ géométrique ssi

 $u_{n+1} = qu_n \ \ \forall n \in I \ \ q$ s'appelle la raison de la suite.

Si $(u_n)_{n\in I}$ est une suite géométrique de raison q et si p est un entier naturel alors :

$$1) u_n = q^{n-p} u_p \quad \forall n \in I$$

2)
$$S_n = u_p + u_{p+1} + u_{p+2} + ... + u_{n-2} + u_{n-1} + u_n$$

Si
$$q = 1$$
 alors : $s_n = (n - p + 1)u_p$

Si
$$q \neq 1$$
 alors : $s_n = u_p \frac{1 - q^{n-p+1}}{1 - q}$

D) Suite et limites :1) On dit que la suite $(u_n)_n$ tend

vers $+\infty$ (quand n tend vers $+\infty$) ssi:

$$(\forall A > 0)(\exists \ n_0 \in \mathbb{N} \)(n \ge n_0 \Rightarrow u_n > A)$$

on écrit $\lim_{n\to +\infty} u_n = +\infty$

2)On dit que la suite $(u_n)_n$ tend vers $-\infty$ (quand n tend

vers
$$+\infty$$
) ssi $(\forall A > 0)(\exists n_0 \in \mathbb{N})(n \ge n_0 \Rightarrow u_n < -A)$

on écrit $\lim_{n \to \infty} u_n = -\infty$

- 3) $\lim_{n \to +\infty} u_n = -\infty \Leftrightarrow \lim_{n \to +\infty} -u_n = +\infty$
- 4) $\lim_{n \to +\infty} n^2 = +\infty$; $\lim_{n \to +\infty} n^p = +\infty$ $p \in \mathbb{N}^*$ et $\lim_{n \to +\infty} \sqrt{n} = +\infty$
- 5) la suite $(u_n)_n$ tend vers l ssi

$$(\forall \varepsilon > 0)(\exists \ n_0 \in \mathbb{N} \)(n \ge n_0 \Rightarrow |\mathcal{U}_n - l| < \varepsilon)$$

on écrit $\lim u_n = l$

- 6) $\lim_{n \to +\infty} \frac{1}{n^2} = 0$; $\lim_{n \to +\infty} \frac{1}{n^p} = 0$ $p \in \mathbb{N}^*$ et $\lim_{n \to +\infty} \frac{1}{\sqrt{n}} = 0$
- E) Opération sur les limites des suites.
- 1) Limite de la somme :

$\lim u_n$	l	l		+∞	-8	-∞
$\lim v_n$	ľ	+∞	-∞	+∞	8	+∞
$\lim(u_n+v_n)$	l + l'	+∞	-∞	+∞	-8	Formes indéterminées

2) Limites des produits

$\lim u_n$	l	l > 0 ou +∞		l < 0 ou −∞		±∞
$\lim v_n$	ľ	+∞	-∞	+∞	-8	0
$\lim(u_n \times v_n)$	l. l'	+∞	-∞	-∞	+8	Formes indéterminées

3) Limites des inverses

$\lim u_n$	l ≠ 0	0+	0-	±∞
$\lim \left(\frac{1}{u_n}\right)_n$	$\frac{1}{l}$	+∞	-8	0

4) Limites des quotients

$\lim u_n$	l	<i>l</i> > 0 ou +∞		l < 0 ou −∞		0	±∞
$\lim v_n$	l' ≠ 0	0+	0-	0+	0-	0	±∞
$\lim \left(\frac{u_n}{v_n}\right)_n$	<u>l</u> <u>l'</u>	+∞	-∞	-∞	+∞	Formes indéterminées	Formes indéterminées

 $\lim |u_n| = 0 \Leftrightarrow \lim u_n = 0$

Remarques :1) La limite d'une suite polynôme est la limite de son plus grand terme

2) La limite d'une suite rationnelle est la limite du rapport des termes de plus grand degré

F) limites et l'ordre et techniques de calculs des

limites: $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ et $(w_n)_{n\in\mathbb{N}}$ des suites

1)si $(u_n)_{n\in\mathbb{N}}$ convergente vers L et : $(\exists N \in \mathbb{N})(\forall n > N)$:

 $u_n \ge 0$ Alors: $L \ge 0$

2)si $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ convergentes tels que :

 $(\exists N \in \mathbb{N})(\forall n > N)(v_n \le u_n) \text{ Alors} : \lim v_n \le \lim u_n$

3) si $(\exists N \in \mathbb{N})(\forall n > N)(\ V_n \le u_n)$ et $\lim V_n = +\infty$ alors:

 $\lim u_n = +\infty$

4)si : $(\exists N \in \mathbb{N})(\forall n > N)(v_n \le u_n)$ et $\lim u_n = -\infty$

alors: $\lim v_n = -\infty$

5) si l un réel. tels que: $|u_n - l| \le v_n \quad \forall n \ge p$

et $\lim_{n \to +\infty} v_n = 0$ alors $\lim_{n \to +\infty} u_n = l$

6) si $w_n \prec u_n \prec v_n$ et $\forall n \ge p$ et $\lim_{n \to +\infty} v_n = \lim_{n \to +\infty} w_n = l$

Alors: $(u_n)_{n\in\mathbb{N}}$ est convergente et $\lim_{n\to+\infty} u_n = l$

G)Suite de la forme : $v_n = f(u_n)$

Soit f une fonction continue sur un intervalle I; et (u_n) une suite numérique telle que

 $(\exists N \in \mathbb{N})(\forall n > N)(\ u_n \in I)$

Si $\lim_{n \to +\infty} u_n = l$ et f continue en l

Alors $\lim_{n \to \infty} f(u_n) = f(l)$

H)limite de Suite de la forme : a^n et n^p

1)a)si a > 1 $\lim_{n \to +\infty} a^n = +\infty$

b)si $-1 \prec a \prec 1$ $\lim_{n \to +\infty} a^n = 0$

c)si $a \le -1$ (a^n) n'a pas de limites

 $2) \lim_{n \to \infty} n^p = +\infty \text{ si } p \in \mathbb{N}^*$

I)Suite de la forme : $u_{n+1} = f(u_n)$

Soit f une fonction définie sur un intervalle I et (u_n) une suite numérique telle que :

a) f est continue sur I

b) $f(I) \subset I$

c) $(\forall n \in \mathbb{N})(u_{n+1} = f(u_n))$

d) $u_0 \in I$ (donc $(\forall n \in \mathbb{N})(u_n \in I)$

e) (u_n) est convergente

Alors la suite (u_n) tend vers l solution de l'équation

f(x) = x

J) Les suites adjacentes :

1) deux suites numériques (u_n) et (v_n) sont adjacentes si :

a) L'une est croissante l'autre est décroissante.

b) $\lim_{n \to +\infty} v_n - u_n = 0$

2)Si (u_n) et (v_n) sont deux suites adjacentes et (u_n) est croissante et (v_n) est décroissante alors

 $(\forall n \in \mathbb{N})(u_n \leq v_n)$

C'est en forgeant que l'on devient forgeron » Dit un proverbe.

C'est en s'entraînant régulièrement aux calculs et exercices

Que l'on devient un mathématicien